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ABSTRACT
In order to utilize artificial intelligence (AI) safely and securely in
society, explainable artificial intelligence (XAI) technology, which
has the property of being able to explain the reasons why a system
has reached a conclusion, is necessary. Therefore, although ma-
chine learning approaches are currently the mainstream of AI, AI
technology that combines inductive machine learning and deduc-
tive knowledge utilization is expected to become necessary in the
future. Currently, however, there is no dataset to evaluate both ap-
proaches properly. In this study, we constructed and refined large-
scale scene graphs and event-centered knowledge graphs, and have
released them as open data. While most knowledge graphs contain
only simple relationships, the constructed knowledge graphs are
characterized by the fact that they contain more complex relation-
ships that reflect the real world, such as temporal, causal, and prob-
abilistic relationships. In addition, we developed refinement meth-
ods for the actual use of the constructed knowledge graphs for in-
ference andmachine learning.We held four technical competitions
in Japan for AI technologies with various explanatory possibilities,
gathered methods related to inference and estimation from a wide
range of IT engineers, and classified the proposed technologies. An
international version of the competition is planned for FY2022. In
the future, we would like to design appropriate indices and con-
duct objective evaluations, classifications, and systematization for
the development of AI technologies with explanatory properties,
especially those that combine inductive machine learning (infer-
ence) and deductive knowledge utilization (reasoning).

CCS CONCEPTS
• Theory of computation→ Semantics and reasoning; Logic;
• Computing methodologies→ Artificial intelligence.
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Event-centric, Knowledge Representation, LinkedData, OpenData
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1 INTRODUCTION
In recent years, there has been a growing interest in artificial intel-
ligence (AI) technologies such as deep learning. In the near future,
AI technology is expected to be incorporated into various social
systems. It is also expected that AI technology will be integrated
into various social systems, and such systems will eventually leave
human hands alone to make decisive decisions on their own. How-
ever, in order to utilize AI in society in a safe and secure manner,
technologies and quality assurance are needed to confirm that AI
systems are operating properly. However, machine learning tech-
nologies such as deep learning are black boxes in their decision-
making and prediction processes, and humans do not understand
the reasons for their conclusions. For this reason, AI technologies
that have explainability (i.e., XAI) or interpretability, properties
that enable an AI system to explain the reasons for its conclusions,
are attracting attention. Indeed, this has already been recognized
domestically and internationally, and related workshops and sym-
posiums have been actively held at international conferences on
deep learning.

In addition, although current AI technologies are mainly based
on machine learning approaches, AI technologies that combine in-
ductive machine learning and deductive knowledge utilization are
expected to become necessary in the future. For example, when
considering automated driving as an AI-applied system that can-
not escape accountability in the event of an incident or accident,
it is essential to recognize the situation around one’s own vehicle
usingmachine learning and estimation techniques based on sensor
data obtained from the vehicle’s front camera and radar. However,
traffic rules and vehicle operation itself are predefined knowledge,
and automated driving is ultimately based on the integration and
fusion of knowledge and data.

Currently, however, there are no datasets that can be used to
evaluate inductivemachine learning techniques and deductive knowl-
edge application techniques properly. Most benchmark datasets
used for estimating relationships bymachine learning contain only
relatively simple relationships and cannot be used for problems
that combine multiple subtasks to achieve an overall goal, such as
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automated driving. For example, representative datasets such as
FB15k and WN18 contain only a large amount of simple relation-
ships between data points, such as “is-a” and “hasSpouse”. On the
other hand, much of the rule-like knowledge is domain-dependent,
and very few datasets can be used as large, generic test sets that are
also applicable to machine learning. A suitable dataset for the task
of implementing interpretable AI using inference and estimation
techniques should include not only relatively simple relationships,
such as those for which estimation of binary relations suffices, but
also more complex relationships that reflect the real world, for ex-
ample, temporal, causal, and probabilistic relationships.

Therefore, in this study:

(1) As a common dataset for the evaluation of inference and es-
timation techniques that satisfy the above requirements, we
constructed a scene- or event-centered knowledge graphs
that contain complex and structural relationships, such as
real social problems and human relationships, and created
guidelines for their refinement.

(2) We have published these graphs as open data and held tech-
nology competitions four times in the past[5, 6, 8, 10, 14, 15]
to gather methods related to inference and estimation from
a wide range of IT engineers and researchers, and classified
the proposed technologies.

Our goal is to design appropriate indicators and then objectively
evaluate, classify, and systematize AI technologies with explana-
tory and interpretative properties, especially those that combine
inductive machine learning (estimation) and deductive knowledge
(inference) applications.

The schema of a knowledge graph involves dividing a series of
contents into the smallest units (scenes), and to graph the contents
of each scene and the relationship between scenes. Such a knowl-
edge graph is called a scene knowledge graph or an event-centric
knowledge graph[2, 4]. Since a scene consists of a large number
of geographic objects and their spatial relations and attributes, it
is important for geographic information system (GIS) applications
to explore effective methods to organize spatial scenes so that they
are more readable by humans and machines. For example, such
methods are being used in practical real-world applications, such
as automatic driving, as shown earlier. These methods are also
widely used in simulation games and the metaverse, as well as in
the prediction of dangerous behaviors for the safety and security
of the elderly[1].

In the following sections of this paper, Section 2 lists the re-
lated works on event-centered knowledge graphs, and Section 3
describes the schema design and construction procedure of the
knowledge graphs of this paper. In Section 4, we present a guide-
line for the refinement of the constructed knowledge graphs and
describe the verification results on the applicability of the guide-
lines. In Section 5, we present an overview of the technical chal-
lenges we have faced so far. However, this paper focuses on the
construction of knowledge graphs, and the details of the proposed
techniques for the technical challenges are left for another paper.
Finally, in Section 6, we summarize the results and discuss future
challenges.

Figure 1: Schema for event and scene graphs.

2 RELATEDWORKS
Knowledge graphs can be used to describe static relationships be-
tween things, such as in product data, a thesaurus, and human re-
lationships, as well as events that occur in space and time, such as
observational data. In recent years, knowledge graphing of events
or scenes, such as video content[9, 17], has been actively studied.
Several schema patterns have been proposed for knowledge graph-
ing of events or scenes, as shown in Figure 1. There seems to be
no significant difference in the difficulty of construction in either
case. Figure 1(a) is a basic triple pattern for knowledge graphing
the information “John sits in a chair”. If we consider representing
this information as an event by adding time and a location to it,
we can take a structuring method such as shown in Figures 1(b-
–e). In Figure 1(b), all information is linked around an event node,
such as with the simple event model (SEM)[16]. Figure 1(c) shows
a pattern that supplements the status of the predicate by inserting
a blank node before the object, and is positioned as an alterna-
tive representation of the SEM. Figure 1(d) displays a pattern in
which the edges hold multiple pieces of information. It is gener-
ally called a property graph and is supported by graph database
systems such as Neo4j. In Figure 1(e), meta-information is given
to the entire triple, and standardization is being discussed in the
form of a resource description framework (RDF)-star. Figure 1(f)
portrays a knowledge hypergraph that can express relations other
than binary relations, and its application to Earth observation data
has been demonstrated[12]. Thus, different schema patterns can be
applied to knowledge graphs of event information.

In contrast, this study aims to annotate the events themselves,
such as “events with a risk of accidents,” and to determine such
events automatically using AI technology. Therefore, a node repre-
senting the event itself is necessary, and the statement type shown
in Figure 1(b) is adopted. Details of the schema are given in Section
3.1.

On the other hand, the contents in the event or scene knowl-
edge graphs include EventKG[3], ECKG[13], Drammer[11], and so
on. EventKG is a knowledge graph describing 690,000 contempo-
rary and historical events and incidents for the purpose of answer-
ing questions and generating histories (timelines) from a specific
perspective. The schema is based on the aforementioned SEM[16]
and is extended to express temporal relationships, and so forth. It
has many similarities with our schema, such as definitions of re-
lationships among events. However, the granularity of its target
events is considerably larger than in our scenes, and it is difficult
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to represent information such as who, when, and how for each
scene using EventKG’s model (although it is possible to describe
them, it would be a complex graph, and it would be difficult to
construct and search the dataset). ECKG provides its ownmodel to
annotate information extracted when building a knowledge graph
directly from news events written in a natural language. It pro-
vides a unique model. However, the model is simple (only who,
what, where, and when) because automatic extraction is the sub-
ject matter. Drammer is not simply a chronological representation
and comparison of narrative content, but is fiction–specific. It is
an ontology that includes conflicts between characters, segmen-
tations of the narrative, and definitions of emotion and belief for
more dramatic representations. It was constructed by analyzing
many dramas, but its purpose is different from that of this study,
which is intended to represent facts (including falsehoods) in the
real world.

By contrast, in this study we (1) constructed knowledge graphs
that convert the background of the case and the characters into
knowledge, using a mystery novel as a subject, and (2) conducted
a technical challenge to identify correctly the culprit and cause
of a case or an accident from given information using inference
and estimation techniques to explain the reasons (evidence, tricks,
etc.) for such identification appropriately. The reasons for choosing
mystery stories as the subject matter include:

• They can allow for the design of tasks that are virtually
closed (e.g., which have answers and can control the con-
straints that lead to them)while including complex relation-
ships in the real world.

• Some tasks can be solved without including probabilistic
processing or machine learning, such as uncertain informa-
tion or photographic evidence, or without supplementing
common knowledge that is not written explicitly, thus en-
couraging the fusion of estimation and inference.

• They have an explanatory quality to human beings that the
reader must agree with in order for it to work as a novel.

• The stories are widely known to the public and easily attract
interest.

As for this technical challenge, in top conferences of AI and neu-
ral networks, such as IJCAI, AAAI, NIPS, and ICML, papers and
workshops that have “explainability” as a keyword and that ana-
lyze the properties of AI models have significantly increased since
2016. However, no other research activity exists like the challenge
discussed in this work, which uses knowledge graphs, including
social problems as common test sets, and tries to solve the prob-
lems with explainability (i.e., using XAI), aiming to integrate in-
ductive estimation and deductive reasoning.

3 KNOWLEDGE GRAPH CONSTRUCTION
In this study, the contents of eight of Sherlock Holmes’s short mys-
tery stories, “The Speckled Band”, “The Dancing Men”, “A Case
Of Identity”, “The Devil’s Foot”, “The Crooked Man”, “The Abbey
Grange”, “The Resident Patient”, and “Silver Blaze”, were converted
into knowledge graphs based on events and scenes. Participants
in the technical challenge developed AI systems using these data
together with their own external knowledge, which was added

Figure 2: Scene knowledge graph.

and created as necessary. The knowledge graph and past proposed
techniques are available on the official website1.

3.1 Knowledge graph schema
In designing the knowledge graph schema, five open workshops
were held in Japan in 2017–2018 to discuss the basic and detailed
design of the schema, knowledge graph construction methods, and
concrete construction work. The total number of participants was
about 110. In the workshop, we first examined the knowledge re-
quired for inference and estimation (what should be described in
the knowledge graph) and how it should be expressed through a
pilot description of the knowledge graph. Then, based on the feed-
back from the participants, we decided on a basic policy of describ-
ing the people, things, and places involved in each scene, focusing
on the scenes depicted in the scenes and the relationships between
the scenes. When designing the schema, in addition to expressive-
ness to represent the subject novels, we also considered the ease
of constructing the knowledge graph and the convenience of pro-
viding it as data for inference processing, and decided on a schema
with mainly 5W1H edges, focusing on scenes (Figure 1(b)). Thus,
a mystery story is represented by each scene and the relationships
among scenes. Each scene2 in a mystery story is assigned a unique
internationalized resource identifier (IRI), which is used as the sub-
ject to describe a scene in the story by adding information about
people, organizations, and places as objects. The relationships be-
tween scenes explain the causal relationships of chronological ac-
tions and events by referring to the IRIs. This is how a series of sto-
rylines is expressed. In addition, rules and table data can be linked
to describe common sense data such as axioms and to represent
information such as timetables. The content of the story is stored
as literal values for natural language processing. Figure 2 shows
an example knowledge graph.

The following basic properties are provided for describing each
scene. In order to summarize the information associated with a
scene, this property takes the scene as its subject. Note that it is
not in the general <subject, predicate, object> format. Figure 3
shows an example scene description.

• subject: a person or thing that is the subject in the descrip-
tion of the scene.

• hasPredicate: a predicate that describes the content of the
scene.

• hasProperty: a property of the person or thing that is the
subject of the scene description.

1https://challenge.knowledge-graph.jp/
2Only scenes that are judged to be necessary for the deduction are converted to
knowledge graphs.
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Figure 3: Example of a scene

• Objects that describe the details of the scene: who/whom,
where, when, what, how, etc.

• Relationships between scenes: then, if, because, etc.
• time: absolute timewhen the scene occurred (xsd:DateTime).
• source: original text of the scene (English/Japanese; literal).

In order to distinguish whether each scene is a fact, someone’s
assertion (statement), or someone’s idea, they are classified into
the four types shown in Table 1.

Table 1: Scene types

Scene type Description
Situation facts and circumstances, e.g., John was murdered.
Statement assertion by someone, e.g., Taro is lying in “John says

Taro is lying.”
Thought someone’s idea, e.g., Taro is the culprit in “John thinks

Taro is the culprit.”
Talk John’s remarks to Taro

Typical predicates representing the relationships between scenes
are shown in Table 2.

Table 2: Relationships between scenes

Relation type Predicate
Time then, at the same time, when, after, before
Condition if
Reason because, why

A list of classes and properties is shown in Figure 4.
In order to express AND OR relations when there are multi-

ple subjects and objects, the AND relation is expressed by describ-
ing multiple triples with the same property. The OR relation is de-
scribed by describing resources that represent OR combinations as
instances of the ORobj type. From this resource, multiple resources
that are the target of OR are described via the kgcc:orTarget prop-
erty. In addition, to handle the negation of predicates (not, can-
not), we introduce classes of the notAction and cannotAction types

Figure 4: Class and Property lists.

as subclasses of Action. Negative predicates are described as in-
stances of these classes. At the same time, they are connected to
predicates of the affirmative form (Action type) by the kgcc:Not
and kgcc:canNot properties.

3.2 Procedure of knowledge graph
construction

The following procedure was used to convert the eight mystery
stories into knowledge graphs:
(1) Extract sentences necessary for deduction frommystery stories

(in Japanese) whose copyrights have expired.
For each novel, about 300 to 500 sentenceswere extracted. Since
arbitrariness enters into the extraction of the parts necessary
for deduction, it is better to include information that is not di-
rectly related to the identification of the murderer (scenery, de-
scription of the situation, common sense, etc.) in the knowledge
graph. However, some extraction is currently performed to re-
duce the number of man-hours involved.

(2) Rewriting the original text into sentences with clear a subject
and object (i.e., short sentences).
One short sentence corresponds to one scene on the knowledge
graph.

(3) Assign semantic roles (e.g., 5W1H) to phrases using natural
language processing tools.
Japanese semantic roll labeling technology is used for semantic
role assignment. The results are output as a predicate and an
object for each scene in a spreadsheet, and are visually checked
at the end.

(4) Control orthographical variants.
We eliminate any notational distortions on a novel-by-novel
basis and across novels as much as possible during the con-
struction phase. Further refinement is shown in Section 4.

(5) Add relationships between scenes (e.g., temporal relationships).
(6) Translate the source text into English and convert the entire

text into a knowledge graph.
An example of the application of steps (2)–(6) is shown in Figure

5. Note that the series of tasks were performed by part time stu-
dents and software engineers (general programmers, not advanced
knowledge engineers). The costs for knowledge graph construc-
tion of each story are as follows: (1) 3 hours per person, (2) 20
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hours per person, (3) 5 hours per person, (4) 7 hours per person,
(5) 3 hours per person, and (6) about 1 hour per person.

Figure 5: Example of knowledge graph conversion.

4 GUIDELINES FOR KNOWLEDGE GRAPH
REFINEMENT

In this study, we havemade a series of improvements to the content
of the descriptions in a knowledge graph in order to identify the
culprit and find the culprit’s motive in mystery stories, expressed
as a knowledge graph. In the following, we present a guideline con-
sisting of ten items/steps we found through the refinement process
of the knowledge graphs. Finally, to validate the applicability of
the guidelines, findings obtained through the implementation of
the guidelines by a third party are presented. Steps 4.2-–4.3 are re-
lated to the addition of implicit information that is not explicitly
described. Steps 4.1 and 4.4-–4.7 are related to the unification of
triple structure, and steps 4.8-–10 are related to the unification of
the vocabulary.

4.1 Short sentences in English are converted to
a syntax that is easy to change to an RDF

• Clarify the division between subject and predicate.
For example, in the sentence “There is no place for Percy Triv-
ellian,” it is difficult to tell whether the subject is “Percy Triv-
ellian” or “Percy Trivellian’s place,” and also whether the pred-
icate is “does not have place” or “does not exist”. In such sen-
tences, since the target to which information is to be added is
“Percy Trivellian,” the subject is taken to be “Percy Trivellian”.

• Complements omitted objects, complements, places, and so forth.
– Example 1: although there is no location information in “He-
len lives with Roylott,” it is clear from the context that she
lives in “Roylott’s house,” so the place should be added.

– Example 2: in the phrase “Roylott is a father-in-law”, it is not
clear from whose perspective he is a father-in-law, so the ad-
ditional information should be provided.

4.2 Adding implicit scenes
For example, “the day Helen’s mother died” can be expressed as a
single literal as “death_day_of_mother_of_helen”. However, it can-
not be used for inference because it does not logically express the
information that this is the day that Helen’s mother died. There-
fore, we introduce a new scene in which “Helen”’s “mother” “died”.

4.3 Add time information
If there is no description of time in the text, absolute time is given
to each scene to the extent that it does not affect the narrative. As
such, “then,” “before,” “after,” and so forth are added as connections
between scenes to clarify the chronological information.

4.4 Screening of sentences to be treated as
scenes

For example, the sentence “The money is 1000 pounds a year” can-
not be understood as a stand-alone scene. Therefore, a triple is
added to supplement the scene such as “Helen and Julia receive
their inheritance.”

4.5 Unification of triplication from typical
sentence patterns

For example, “there is” and “exists” are unified into “exists” to stan-
dardize the symbols used in the inference process. Also, informa-
tion (adjectives) that describe properties are unified with the value
hasProperty;
e.g., “Mr. A’s salary” hasProperty [value 100, unit: dollar].

4.6 Division when there is more than one
subject or object

For example, the scene “Holmes and Watson got out of the car-
riage” splits the subject (value of the subject) into two parts, “Holmes”
and “Watson”. Also, the scene “Holmes placed a box of matches
and a burnt candle near a long, thin walking stick” splits the ob-
ject (value of kgc:what) into “a box of matches” and “a candle”.

4.7 Typing at nesting
In order to express appropriately nested structures caused by hearsay,
each utterance is decomposed as a scene and given an appropriate
type and source of information. For example, the scene “Holmes
said that “Mr. B said that “Mr. A said (any)””.” is decomposed as
follows:
# Holmes said kd:id-x
kd:id-a rdf:type kgc:Situation ;

kgc:subject kd:Holmes ;
kgc:hasPredicate kdp:say ;
kgc:what kd:id-x .

# Mr. A said kd:id-y
kd:id-x rdf:type kgc:Statement ;

kgc:InfoSource kd:Holmes ;
kgc:subject kd:A ;
kgc:hasPredicate kdp:say ;
kgc:what kd:id-y .

# Mr. B said (any)
kd:id-y rdf:type kgc:Statement ;
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kgc:InfoSource kd:A ;
kgc:subject kd:B ;
kgc:hasPredicate kdp:say ;
kgc:what (any) .

Then, we distinguish whether the scene type is Situation or
Statement, and specify the information source (InfoSource) in the
case of a statement. In addition, scene IDs are specified as the ob-
ject (value of “what”) for connections between scenes.

4.8 Mapping verbs to hasPredicate values
• Verb forms are unified in the active voice.
To facilitate the inference process, the scene “Mr. A was shot by
Mr. B” is rephrased as “Mr. B shot Mr. A.”

• Verb tenses are unified in the present tense.
Since time information can be determined by the aforemen-
tioned time addition, the verb (the value of hasPredicate) in the
scene “Mr. B shot Mr. A” is “shoot” in the present tense, not the
past tense.

• Emotional expressions are unified into states, not verbs.
For example, in the scene “John Straker was excited,” “excited”
is not treated as a verb, but is taken as a state and the value of
hasProperty.

• Scenes involving verbs followed by infinitives are broken down.
For example, in the scene “John Straker tried to go check the
stable”, instead of creating a verb like tryTo, we break the scene
down as follows.

# John Straker tried to go to check the stable.
kd:id-a kgc:subject: kd:John_Straker ;

kgc:hasPredicate: kdp:try ;
kgc:what kd:id-x .

# John Straker go to check the stable.
kd:id-x: kgc:subject kd:John_Straker ;

kgc:hasPredicate kdp:go ;
kgc:where: kd:the_stable ;
kgc:why kdp:check .

• Auxiliary verbs and verbs concatenated into one verb.
For example, in the scene “Percy Trivellian had to prepare the
money,” mustPrepare is created as a verb, and the inference pro-
cess is facilitated by separately defining that it consists of “must”
and “prepare”.

4.9 Unification of words such as object and
complement

• Assign unique names and IRIs to people and things.
List the people and things that appear first, and assign unique
names and IRIs to them.

• Replace collation with proper nouns and scene IDs.
To distinguish whether it is a concrete person or thing, replace
directives, pronouns, and so forth, with proper nouns.

• Unified notation for labels and IRIs.
Establish conventions for the use of camel notation, snake nota-
tion, space delimiters, and so forth, to ensure consistencywithin
a knowledge graph.

4.10 Uniform treatment of modifiers
Since a modifier may be used as a keyword in a story, we use a
resource as it is if it has a qualifier, such as “red carpet.” The type
is then defined as “carpet” and the property (value of hasProperty)
is defined as “red”.

4.11 Verification of the guideline application
To apply this guideline, we first conducted a trial applicationwith a
third party using one of the target stories, “The Resident Patient”,
as an example, and examined the costs and procedures required
for the work. Specifically, a software engineer who had knowledge
of RDF and an outline of the inference challenge, but was not in-
volved in the creation of the guidelines (hereafter, the worker), un-
dertook steps 4.1—4.9 while referring to the guidelines, and sum-
marized considerations for a full-fledged application. The tenth
guideline was excluded from the application because it requires
the development of a vocabulary to be used as modifiers. After-
wards, the results of the work were shared and discussed among
the workers and the guideline authors, and the following findings
were obtained.

• The work taken to execute steps 4.1, 4.2, and 4.4 is very
costly because each of these guidelines requires close ex-
amination based on an understanding of the short sentences
that describe the scene and the content of the original novel.
For this reason, we decided to extract the scenes to which
these guidelines should be applied first.

• For step 4.3, this can be handled by extracting scenes with
time entries, finding a reference date and time entry, and
shifting the time by several hours from that point as the
story progresses.

• For steps 4.5, 4.6, 4.8, and 4.9, it seems possible to extract
the target locations and handle them to some extent by au-
tomatic processing.

• For step 4.7, since it is costly to change the description of
nested expressions, scene types (Table 1) should be given
thoroughly and the need for nested expressions should be
clearly stated.

The sameworker then revised the remaining seven stories based
on the guidelines, in accordance with the above policy. RDF triples
were converted to a spreadsheet format as the working data, and a
comparison tool was developed and used to unify the vocabulary.
The approximate time for knowledge graph revision of all stories
was about 30 days per person. Finally, the guideline developers re-
viewed and revised the results. Through this verification, we were
able to confirm that the application of the guidelines by a third
party was generally appropriate, although some of the work by the
third party required modification. It was also found that the steps
that were related to the extraction of correction points because
of the high time costs included items that should be individually
detailed in the correction policy; thus, further studies are needed.
Regarding the applicability of this guideline to knowledge graphs
in general, we found that steps 4.2-–5 and 4.7 are specific to scene
graphs or event-centric knowledge graphs, while steps 4.1, 4.6, and
4.8–10 are common to general knowledge graph refinement.
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The constructed and refined knowledge graph is available as
open data on the project website3.

5 KNOWLEDGE GRAPH REASONING
CHALLENGE

As mentioned above, this task is to correctly identify the culprit
and causes of incidents and accidents using inference and estima-
tion techniques. However, since it can be generalized as a kind of
knowledge graph completion4, it can be positioned as a generic
problem setting that can be applied to the construction of var-
ious knowledge bases including knowledge graphs, information
extraction and relation extraction, knowledge updating and main-
tenance, and so on. Moreover, in addition to the focus on real so-
cial problems and the emphasis on explainability of the results,
there are some unique difficulties, such as described in the follow-
ing points:

• Real-world problems are all individual cases, and similar
scenes do not necessarily appear more than once. There-
fore, knowledge or data is not necessarily big data, making
learning difficult.

• Rather than explaining single relationships by approxima-
tion in vector space, they must be assembled or chained to-
gether to derive the goal as a whole.

• The knowledge graph includes false statements spoken by
the characters.

5.1 Outline of proposed techniques
The following three categories were selected for application:

(1) Main track: develop a system to solve one or more tasks of
the target stories.

(2) Tool track: develop tools to solve partially any of the tasks
(e.g., suspect estimation, alibi verification, motive explana-
tion, and so forth).

(3) Idea track: derive ideas on how to realize any of the above
(possibly without system implementation).

The total number of proposals from the 1st to the 3rd contests
was 24 (11 in the main track, 5 in the tools track, and 8 in the ideas
track)5. This section discusses the overall trend of these proposals.
The approaches to the challenge can be broadly divided into the
following two categories:

• Knowledge processing approaches to reasoning based on
rules using first-order predicate logic, ontology definitions,
and so forth.

• Machine learning approaches to finding information that
leads to identifying the culprit by learning from the pro-
vided knowledge graph, other cases, and novels as training
data.

Therefore, the first perspective for comparing the proposed tech-
niques is: (1) whether the method is centered on knowledge pro-
cessing/machine learning or both. The knowledge graphs of mys-
tery stories provided in this challenge were created by extracting
the main parts from the contents of the stories and following the

3https://github.com/KnowledgeGraphJapan/KGRC-RDF
4e.g., to regard a particular person as lacking the attribute of a culprit.
5The fourth contest was a challenge for students only, so it is omitted here.

descriptions of the stories. Therefore, the knowledge graphs in-
clude a large amount of knowledge that is common knowledge to
the readers of the stories and not explicitly described (e.g., “death
by a knife to the heart”). For this reason, the challenge allows appli-
cants to supplement external knowledge necessary for inference,
and the introduction of useful external knowledge is also an impor-
tant aspect of evaluation. Therefore, as the second perspective, (2)
we compared the external knowledge used in each method. Table
3 shows the results of the comparison of the proposed techniques,
focusing on the above two perspectives.

Regarding the type of approach in (1), most of the works in the
first challenge focused on knowledge processing. However, we saw
a significant increase in the number of approaches using machine
learning from the second challenge. In addition, methods that use
both approaches in a mutually complementary manner (the main
track #1 and #4 in the second challenge) could also be seen, and this
suggests that the tasks in this challenge could be a research target
that encourages the integration of knowledge processing and ma-
chine learning.

On the other hand, for (2), many of the methods in the first
challenge used knowledge necessary for inference as originally
created ontologies or rule descriptions. However, after the second
challenge, many methods that utilize existing resources such as
WordNet, Wikipedia, and Wikidata were proposed. It is thought
that there is a desire to reduce the cost of describing proprietary
knowledge. In the future, it will be an important issue to what ex-
tent existing resources can be used as external knowledge.

The details of individual proposals and their evaluation were
discussed in[5, 6, 8, 10, 14, 15]．

6 SUMMARY AND FUTURE ISSUES
In this paper, we described our findings in constructing and refin-
ing scene knowledge graphs using a test set with the goal of con-
tributing to the technological advancement of XAI. Although other
knowledge graphs with more triples exist, many of them contain
only simple relationships. The knowledge graphs in this study are
characterized by including more complex relationships that reflect
the real world, such as temporal, causal, and probabilistic relation-
ships. Although there are many studies that automatically gener-
ated knowledge graphs from text data using natural language pro-
cessing techniques, much of the data cannot be used as is. There
has been no other study that summarized refinement methods for
actually using the constructed knowledge graphs for inference and
machine learning. We hope that Section 4 will serve as a general
guideline for other studies.

The first issue to be addressed is the organization of the “is-a”
hierarchy of verbs. Since this is expected to be a huge task that is
also connected to the development of the Japanese language sys-
tem, we first developed a lexicon for verbs, and then developed a
tool to group words with similar semantics. However, there is a
tradeoff in combining subtle differences in semantics into a com-
mon vocabulary. While such an approach may facilitate symbolic
inference, it is known that the details of semantics expressed using
embedding and other methods may be lost in some cases. This is
one topic that should be considered in the integration of logical
reasoning and machine learning. The second is the consideration
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Table 3: Comparison of proposed techniques from the knowledge graph reasoning challenges

of new scene representation methods. In the current schema, each
scene is represented as a knowledge graph. However, it is also pos-
sible to prepare a knowledge graph that represents the situation at
each point in the story, and to represent each scene as a differen-
tial change to the knowledge graph. This is the difference between
Motion JPEG and MPEG. We will consider this is as a future issue.

The topic of XAI using knowledge graphs has become a research
topic in recent years, with several workshops and special sessions
being held at prominent conferences. In this study, we hosted the

first International Workshop on Knowledge Graph Reasoning for
Explainable Artificial Intelligence (KGR4XAI)[7]6 in conjunction
with IJCKG2021 in FY2021, and attracted more than 80 partici-
pants. In FY2022, we are planning to hold the first International
Knowledge Graph Reasoning Challenge. We look forward to the
participation of all related parties.

6https://kgr4xai.ikgrc.org/
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