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ABSTRACT
When the estimated probabilities do not match the relative fre-
quencies, we say these estimated probabilities are uncalibrated [39],
which may cause incorrect decision making, and is particularly
undesired in high-stakes tasks [45]. Knowledge Graph embedding
models are reported to produce uncalibrated probabilities [36], e.g.,
for all the triples predicted with probability 0.9, the percentage of
them being truly correct triples is not 90%. In this article, we take
a closer look at this problem. First, we confirmed the issue that
typical KG Embedding models are uncalibrated. Then, we show
how off-the-shelf calibration techniques can be used to mitigate
this issue, among which binning-based calibration produces more
calibrated probabilities. We also investigated the possible reasons
for the uncalibrated probabilities and found that the expit trans-
form, the way used to convert embedding scores into probabilities,
is ineffective in most cases.
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1 INTRODUCTION
Knowledge Graphs (KG) [22] are becoming popular and gaining in-
creasing usage in various application scenarios. Probabilistic Knowl-
edge Graphs (PKG), in which each triple is assigned a probability
of the triple being correct, play an important role in scenarios of
uncertainty [9, 31], e.g., drug discovery [44].

One approach to assigning probabilities to triples is to train em-
beddingmodels [4], e.g., TransE [3] or ComplEx [37], for knowledge
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graphs, and then use the scoring function of the trained embedding
model to score the new triples:

score = fembed (⟨®s, ®p, ®o⟩)

where fembed is the scoring function of the embedding model, and
s, p, o represent subject, predicate and object, respectively. Prior
work suggested that these scores can be converted into probabilities
via expit transform [19, 36], i.e., passing these scores through the
sigmoid function as follows.

prob = σ (score) =
1

(1 + exp(−score))
Later work [36] showed that the probabilities obtained in this way
are uncalibrated; e.g., for all the triples with probability 0.9, the
percentage of them being correct triples w.r.t. the real world is
not 90%. Thus, these expit-transformed probabilities need to be
calibrated

prob∗ = fcalib (prob)

where fcalib is a calibration model, and prob∗ are the calibrated
probabilities that do not over-estimate or under-estimate the truth
of triples.

We looked closer at the research of probability calibration for
knowledge graph embedding, with the following contributions:

(1) We stressed 1 that not all expit-transformed scores are appro-
priate to be interpreted as probabilities. Also, we argue that
probability calibration can serve as a more accurate tech-
nique to convert embedding model scores into probabilities.

(2) Though expit-transformed scores of some embedding mod-
els can be interpreted as probabilities, we found that these
probabilities are uncalibrated, and thus calibration is needed.

(3) We provide empirical evidence for a useful rule of thumb
[21] for how to choose calibration techniques: for a large
set of held-out data (say, over 10 thousand triples), binning-
based calibration techniques perform better, such as Isotonic
Regression andHistogramBinning. Otherwise, scaling-based
techniques, such as Platt Scaling, are more suitable.

2 PRELIMINARIES
In this section, we briefly explain some important notions used in
our work.

Knowledge Graphs [22] are represented in a standard format
for graph-structured data such as RDF. A knowledge graph G is a
tuple (E,R,T), where E is a set of entities, R is a set of relation
types, and T is a set of relational triple ⟨s,p,o⟩, where s,o ∈ E are

1We are not the first to show this phenomenon, but unfortunately still many people
mess up.
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respectively the head and tail entities of the triple, and p ∈ R is the
edge of the triple connecting head and tail [23].

Knowledge Graph Embedding is a family of algorithms to
map the entities and relations of a knowledge graph to am-dimension
vector space Rm . A KG embedding model usually defines a scoring
function f (⟨®s, ®p, ®o⟩) that evaluates the truth/correctness of a triple,
where ®s, ®p, ®o ∈ Rm are the relevant embeddings of s,p,o. The model
then strives to find the best embedding for all entities and relations,
such that the positive (correct) triples get as high scores as possible
while the negative (incorrect) triples get as low scores as possible.

Probability Calibration is the technique to adjust the uncal-
ibrated probabilities, or directly transform classifier scores of no
probability meanings into probabilities that satisfy probability ax-
ioms and have probability semantics.

Formally, consider binary classification tasks. Given a set of
samples (X ,y) ∈ D, if ∀β ∈ [0, 1], we have f r

(
X |pr (X ) = β

)
= β ,

where f r (X ) represents the frequency of X being a positive sample,
and pr (X ) represents the predicted probability ofX being a positive
sample, we say the predicted probabilities pr (X ) are calibrated.
Otherwise, we say they are uncalibrated.

Calibrated probabilities are desired, especially in high-stake
decision-making tasks, like medical diagnosis, autonomous driving,
etc. Uncalibrated probabilistic models will lead to under-estimated
or over-estimated risks [11, 38], while calibrated probabilities are
necessary to make optical decisions [15, 45]. Zhao et al [45] mathe-
matically formalised the benefits of calibrated probabilities as No
Regret Decision Making and Accurate Loss Estimation.

To evaluate how well a set of probabilities are calibrated, metrics
such as Brier Score, Negative Log Loss, and Expected Calibration
Error are available [18]. They are defined as:

BS =
1
N

N∑
i=1

(pi − yi )
2

NLL = −
1
N

N∑
i=1

yi loд(pi ) + (1 − yi )loд(1 − pi )

where N is the number of samples, p ∈ [0, 1] is the predicted
probability of the ith sample, and y ∈ {0, 1} is the relevant truth
label.

ECE =
1
b

b∑
j

|pr j − f r j |

where b is the number of bins2 for the unit interval, pr j and f r j
is the average probability and relative frequency of the samples
grouped in the jth bin.

3 RELATEDWORKS
As the concept of knowledge graph was popularised by Google
in 2012 [22], in 2013 Bordes et al., had proposed TransE [3], a
forerunner of KG Embedding models. Afterwards, subsequent new
KG embedding models were proposed. Just to name a few typical
ones, Tabacof’s experiment used ComplEx [37], DistMult [42], and
HoLE [20].

2We group triples according to their estimated probabilities, e.g., all the triples whose
probabilities within [0.1, 0.2] are grouped in one bin.

Two widely used probability calibration techniques are Platt
Scaling (or Logistic Calibration) [26] and Isotonic Regression [21].
There are many more calibration techniques, such as Beta Calibra-
tion [14] and Histogram Binning [43]. As deep learning progressed
rapidly, people discovered that probabilistic outputs of deep neural
networks, particularly those with Batch Norm layers, were uncali-
brated [10], and proposed new calibration techniques for modern
deep neural networks, e.g., Temperature Scaling [10]. Broadly speak-
ing, Beta Calibration and Temperature Scaling are variants of Platt
Scaling and we call them scaling-based techniques. While Histogram
Binning is a variant of Isotonic Regression, we call them binning-
based techniques. According to our evaluation, the binning-based
techniques perform better in large datasets.

Although KG embedding and Probability Calibration are being
actively studied, calibrating KG embedding models is relatively
under-explored. To the best of our knowledge, Tabacof et al [36]
were the first to look at this problem. They reported the uncalibrated
nature of KG embedding models and used calibrated probabilities
to perform the triple classification task. To follow up, Pezeshkpour
et al [25] showed that different negative sampling strategies can
have different effects on the calibration. Safavi et al [30] then used
calibration to improve the trustworthiness of link prediction re-
sults, which is a main downstream application of KG embedding.
Besides, Rao [29] investigated calibrating Knowledge Graph under
the closed-world assumption and open-world assumption. Indeed,
these are all the recent works we found about probability calibration
for knowledge graph embedding.

Building on top of the prior works, we conducted extended ex-
periments to test several calibration techniques on several datasets
related to the problem of KG embedding. We noted that prior works
[19, 36] mistakenly apply expit transforms to obtain probabilities
to measure the correctness of a given triple, resulting in bad proba-
bilities that are uncalibrated. We suggested calibration as a better
approach than expit transform.

4 EXPIT-TRANSFORMED SCORES AS
PROBABILITIES?

Depending on the scoring function of KG embedding models, expit-
transformed scores sometimes can be interpreted as probabilities
but sometimes not. We are not the first to point out this issue. It has
even been noted in some libraries documentation3. For instance,
TransE adopts such a distance-based scoring function:

fT ransE (⟨®s, ®p, ®o⟩) = −||®s + ®p − ®o | |2

Hence fT ransE (⟨®s, ®p, ®o⟩) ∈ [−∞, 0], and thusσ
(
fT ransE (s,p,o)

)
∈

[0, 0.5]. That is to say, the expit-transformed scores of TransE are al-
ways lower than 0.5, which can hardly be recognised as probabilities,
regardless of the truth of a triple. Any embedding models adopting
distance-based scoring functions as TransE, such as TransD [12],
TransR [41], TransH [17], RotatE [35], PairRE [6] and BoxE [1] will
suffer from this problem.

Some may suggest it is not a problem because we can always
map the scale to the unit interval, for example, doubling the scale
of expit-transformed scores of TransE so that now the range turns

3https://pykeen.readthedocs.io/en/stable/reference/models.html Accessed on Octo-
ber 2, 2022
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(a) Expected Calibration Error

(b) Brier Score

Figure 1: Bar charts of ECE and BS for the probabilities pro-
duced by expit transform and the probabilities produced by
various calibration techniques per model per dataset. The
smaller ECE or BS, the better calibrated.

from [0, 0.5] to [0, 1], and obey the probability axioms [40]. In our
later experiments (§5.1), the expit-transformed values of TransE
did achieve relatively high accuracy in the triple classification task.
Nevertheless, it is not the case when it turns to other embedding
models. As shown in Figure 2, the doubled expit-transformed values
of TransR and RotatE4 are still lower than 0.5.

Whether the expit-transformed scores are probabilities could be
arguable, but in the following experiments, we can show that even
if we consider them as probabilities, they are uncalibrated, and thus
cannot be used in high stake applications.

4These two models are not implemented in Ampligraph, so we used the PyKEEN [2]
library implementations.

Figure 2: Histograms of doubled expit-transformed values
of TransR, and RotatE, compared with DistMult and Com-
plEx (not doubled). Models were trained on UMLS dataset,
optimising theNLL loss, with 500 epochs and early-stopping
trick.

5 EXPERIMENT AND RESULTS
We conducted experiments5 to examine the following hypothesis:

(1) Expit-transformed probabilities of current KG Embedding
Models are uncalibrated, but off-the-shelf calibration tech-
niques can effectively make the uncalibrated probabilities
calibrated, producing more accurate probability estimations
(see §5.1).

(2) Binning-based techniques (Isotonic Regression andHistogram
Binning) generally work better than scaling-based ones (Platt
Scaling and Beta Calibration) when large datasets are avail-
able (see §5.2).

Extending the setting of the previous work by Tabacof et al
[36], in our experiment, we trained 4 typical KG embedding mod-
els, TransE [3], ComplEx [37], DistMult [42], and HoLE [20] on
6 datasets: FB13k [33], WN11 [33], YAGO39 [8], DBpedia50 [32],
Kinship [13], and UMLS [13]. Each dataset is split into 3 subsets for
training, calibration, and testing. The calibration and testing sets
of FB13, WN11 and YAGO39 have ground truth negative samples,
while the other 4 don’t. Therefore, we generated synthetic negative
samples via the corruption and local closed world assumption. In
all datasets, we have balanced positive and negative samples.

We used the implementation of Knowledge Graph Embedding
Models from AmpliGraph6 [7] and the implementation of calibra-
tion techniques from NetCal7 [16]. We trained each model for 500
epochs to optimise the Negative Log Loss, using early-stopping to
avoid over-fitting. The vector dimensionality is set to 100. We used
the Adam optimiser with an initial learning rate of 1e − 4.

5Code will be available at https://github.com/TREAT-UOE/kgcal
6https://github.com/Accenture/AmpliGraph visited on October 2, 2022
7https://github.com/fabiankueppers/calibration-framework visited on October 2,
2022
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Figure 3: Accuracy of triple classification task in different
datasets, using probabilities and a natural threshold τ = 0.5

5.1 Uncalibrated Probabilities
To evaluate hypothesis (1), our goal is to compare the expit-transformed
probabilities and calibrated probabilities and show whether the
former incur higher calibration errors.Firstly, we trained KG em-
bedding models on a training set (TrainE ) and computed the expit-
transformed probabilities of triples in the test set. Specifically, we
doubled the expit-transformed values of TransE so that the range of
them is turned from [0, 0.5] to [0, 1]. Then, we trained a calibration
model on a held-out set (TrainC ) and obtained the calibrated prob-
abilities of triples in the testing set via the calibration model. We
compared the expit-transformed probabilities and the calibrated
probabilities in Figure 1, which illustrates that expit-transformed
values get higher ECEs and BSs than calibrated ones, meaning that
the KG embedding models are more or less uncalibrated, and almost
all calibration techniques produced better-calibrated probabilities
than the expit-transformed ones.

We use these probabilities to perform the triple classification
task with 0.5 as the threshold. We chose 0.5 because it is the natural
threshold of probabilities. Without further elaboration, we tend to
believe that a statement with a probability higher than 0.5 is likely
to be true, while a statement with a probability lower than 0.5 is
likely to be false. Figure 3 shows that the calibrated probabilities can
serve as a better indicator to classify the positive triples from the
negative ones than the uncalibrated ones. In most cases, calibrated
probabilities can do at least as good as uncalibrated probabilities.
In some cases, calibrated probabilities can significantly lift the
classification accuracy. We also noted that the expit-transformed
probabilities of TransE (doubled) in some datasets achieve closed
accuracy as the corresponding calibrated probabilities, whichmeans
in classification tasks they can serve as probabilities, but no better
than calibrated ones.

These results suggest that calibration is a better way than expit
transform to convert embedding scores into more calibrated and
accurate probabilities. Expit-transformed probabilities, after the
range adapted to [0,1], should be used only when no extra data (the
calibration set TrainC ) is available to train a calibration model.

Figure 4: Number ofwinning counts for different calibration
techniques for the 4 KG embedding models when the cali-
bration sets of FB13, WN11, and YAGO 39 shrink. For each
calibration result, we compute all the 3metrics (BS, NLL, and
ECE), so that every bin in the figure has 36 counts in total.

5.2 Binning-based Calibration
During the experiment, we observed that binning-based calibration
(Isotonic and Histogram) performs better in general. We also no-
ticed that binning-based methods dominated in FB13k, WN11 and
YAGO39, which has more data than the rest. Previous work also
suggested that binning-based methods tend to overfit, especially
on smaller datasets [21]. Thus, to evaluate hypothesis (2), we took
these 3 datasets, and gradually shrink the size of the calibration
sets by randomly sampling k% of them, and compare the number
of wins in terms of BS, NLL, and ECE between binning-based and
scaling-based methods. We plotted the results in Figure 4.

Results show that the performance of binning-based calibration
techniques dominates at the beginning. As the size of the calibra-
tion sets shrinks, the winning count of Isotonic Regression and
Histogram Binning decreases, while that of Platt Scaling and Beta
Calibration increases. This implies that we should prefer binning-
based calibration when large datasets are available (e.g. over 10k
triples). When the dataset is relatively small, determining which
calibration technique is better requires careful empirical evaluation.

6 CONCLUSION
We stressed that not all expit-transformed scores are appropriate
to be interpreted as probabilities. What is worse, probabilities ob-
tained by expit transform are generally uncalibrated for various
KG embedding scores on various datasets. However, off-the-shelf
calibration techniques can effectively calibrate these probabilities.
If large datasets (over 10k triples) are available, binning-based tech-
niques, including Isotonic Regression and Histogram Binning pro-
duced the best calibrated probabilities. In a long run, we will still
need to compare the usefulness of probability against other kinds of
uncertainties, like possibility [27, 28] and fuzziness [24, 34]. What’s
more, in this research we only focusd on those widely used embed-
ding models. In the future, we will look at the recently proposed
models, like DualE [5] and JointE [46].
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