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ABSTRACT
Reasoning results computed by description logic systems can be

hard to comprehend. When an ontology does not entail an expected

subsumption relationship, generating an explanation of this non-

entailment becomes necessary. In this paper, we use countermodels

to explain non-entailments. More precisely, we devise relevant parts

of canonical models of EL ontologies that serve as explanations

and discuss the computational complexity of extracting these parts

by means of model transformations. Furthermore, we provide an

implementation of these transformations and evaluate it using real

ontologies.
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1 INTRODUCTION
DLs are formal knowledge representation languages that formal-

ize knowledge in terms of concepts and relations between them.

DL systems possess knowledge in form of sets containing logical

statements about a specific domain of interest, e.g. medical sciences.

These sets are usually referred to as ontologies or TBoxes
1
. A DL

TBox typically speaks about subsumption relationships of concepts,

which are defined as unary predicates using the specific DL of the

TBox. In this paper, we consider the DL EL— a language with ex-

istential quantification and conjunction. DLs are widely used for

knowledge representation as they constitute the foundation ofW3C

standardized ontologies comprised in the OWL 2 standard.

1
TBox abbreviates terminological knowledge.
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The logical statements in EL TBoxes are assertions about sub-

sumption relationships between two EL concepts. For instance, a

sentence of an EL TBox could state that “every Cat is a Mammal”,

where Cat andMammal are EL concepts of the respective TBox.

DL systems are used to perform various reasoning services using

the TBox knowledge. Standard reasoning problems for DLs are

well-investigated and often implemented in highly optimized rea-

soner systems [14]. However, these reasoning results can be hard

to comprehend for users of the DL systems, which is the reason for

the development of various syntax as well as semantics-based ap-

proaches to explaining logic-based AI reasoning [1, 7, 8, 11, 21, 26].

A common reasoning problem for EL TBoxes is to decide whether

a concept is subsumed by another one w.r.t. the given TBox. Some-

times, a user might face the situation in which the subsumption

relationship cannot be deduced from the TBox — and the reason

for this non-entailment can be far from obvious.

Non-entailments can be explained by using countermodels of the

subsumption relationship in question w.r.t. the TBox in use. Now,

not every countermodel is suitable for the purpose of explanation

since these models might contain a lot of irrelevant information

as the TBox can easily consist of tens of thousands of statements.

In order to provide concise explanations to users of EL systems,

we define logically relevant parts of countermodels for the user to

understand the non-entailment. More precisely, we provide four

notions of relevant parts of countermodels, which are built upon

each other. We then define model transformations to extract these

relevant parts from canonical models of EL TBoxes — these are

canonically constructed models that every EL TBox admits. In fact,

many EL reasoners implement the computation of canonical mod-

els [6, 20, 22]. As formalism for extracting relevant substructures

from canonical models, we use graph transductions [13]. In gen-

eral, transductions specify mappings over graph (or higher arity)

structures using logical formulae with free variables.

In Section 3, we provide the definitions of the relevant parts of

countermodels and explain the idea using an example from the

medical sciences. In Section 4, we define the model transforma-

tions, show their soundness w.r.t. the definition of relevant parts

of countermodels using canonical models as input, and discuss

their computational complexity. In Section 5 then, we present an

implementation of these transformations paired with a run time

evaluation using TBoxes from practical applications. The definitions

of relevant parts of countermodels and first models transformations

have been introduced in [3]. This paper extends [3] by adding fur-

ther model transformations and by showing complexity results

for the defined transductions as well as by providing an evaluated

implementation.
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2 PRELIMINARIES
DLs are decidable knowledge representation languages that can

model structures over unary and binary predicates. Unary pred-

icates are called concepts and binary predicates are called roles.

Concepts for the description logic EL are built inductively from a

set of concept names NC and a set of role names NR. Let 𝐴 ∈ NC

and 𝑟 ∈ NR, then, an EL concept 𝐶 is constructed by the syntax:

𝐶 ::= 𝐴 | 𝐶 ⊓𝐶 | ∃𝑟 .𝐶 | ⊤.
We assume that the sets of concept names and role names are dis-

joint and we denote concepts by upper case and roles with lower

case letters. A signature Σ is the union of two finite sets ΣC ⊂ NC

and ΣR ⊂ NR. By EL(Σ) we denote the set of EL concepts using

only signature symbols from Σ. An interpretation I = (DI , ·I )
over a signature Σ consists of a non-empty set DI

called the inter-

pretation domain and an interpretation function ·I that maps every

concept name in ΣC, written 𝐴I
for a concept name 𝐴, to a subset

of DI
and every role name in ΣR, written 𝑟I for a role name 𝑟 ,

to a subset of DI × DI
. The mapping ·I extends to concepts as

follows:

• (𝐶 ⊓ 𝐷)I = 𝐶I ∩ 𝐷I
,

• (∃𝑟 .𝐶)I = {𝑑 ∈ DI | there is an 𝑒 ∈ 𝐶I 𝑠 .𝑡 . (𝑑, 𝑒) ∈ 𝑟I },
• and ⊤I = DI

.

Knowledge for DL systems is stored as logical formulae in so called

TBoxes (terminological knowledge), which sometimes are referred

to as ontologies. An EL TBox T is a finite set of concept inclusions

(CIs), which are formulae of the form 𝐶 ⊑ 𝐷 , where 𝐶 and 𝐷 are

EL concepts. We abbreviate 𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝐶 by 𝐶 ≡ 𝐷 . An

interpretation I satisfies a CI 𝐶 ⊑ 𝐷 if 𝐶I ⊆ 𝐷I
, and I is called

model of a TBoxT ifI satisfies all the CIs inT .Wewrite (I, 𝑎) |= 𝐻

to express that 𝑎 ∈ DI
satisfies 𝐻 , and (I, 𝑎) |= Γ if (I, 𝑎) |= 𝐻

for each 𝐻 in a set of concepts Γ. For a TBox, an interpretation or a

concept 𝑋 , we denote its signature by sig(𝑋 ). To denote the concept
signature of 𝑋 , we write sigC (𝑋 ) = sig(𝑋 ) ∩ NC, and sigR (𝑋 ) =

sig(𝑋 ) ∩NR for the role signature. A prominent reasoning problem

for DLs is to decide subsumption. Given two concepts𝐶 and𝐷 and a

TBox T , subsumption (denoted by T |= 𝐶 ⊑ 𝐷) decides whether for

each model I of T , it is the case that 𝐶I ⊆ 𝐷I
. The main method

for deciding subsumption is to compute the canonical model of an

EL TBox [9]. To compute the canonical model, the respective TBox

needs to be normalized first. A TBox is in normal form if and only

if it only contains CIs of the forms:

𝐴 ⊑ 𝐵, 𝐴1 ⊓𝐴2 ⊑ 𝐵, ∃𝑟 .𝐴 ⊑ 𝐵, 𝑜𝑟 𝐴 ⊑ ∃𝑟 .𝐵,
where𝐴,𝐴1,𝐴2, and 𝐵 are concept names or⊤, and 𝑟 is a role name.

Every TBox T can be transformed into a TBox T ′
in normal form,

s.t. the size of T ′
is linear in the size of T and every model of T ′

is a model of T [4]. Let T be a normalized EL TBox. In [4], the

canonical model IT of T is defined as follows:

• DIT
:= {𝐴 | 𝐴 ∈ sigC (T )} ∪ {⊤},

• 𝐴IT
:= {𝐵 ∈ DIT | T |= 𝐵 ⊑ 𝐴} f.a. (for all) 𝐴 ∈ ΣC,

• 𝑟IT := {(𝐴, 𝐵) ∈ DIT × DIT | T |= 𝐴 ⊑ ∃𝑟 .𝐵} f.a. 𝑟 ∈ ΣR,

We use of the following convenient property of canonical models.

Theorem 2.1 ([4]). For any normalized EL TBox T and two con-

cept names 𝐴 and 𝐵, we have T |= 𝐴 ⊑ 𝐵 if and only if IT |= 𝐴 ⊑ 𝐵.

Subsumption of arbitrary concepts 𝐶 and 𝐷 can be tested, if the

CIs 𝐴 ≡ 𝐶 and 𝐵 ≡ 𝐷 are added to T . We will also use simulation

relations, which can e.g. be found in [24]. Let I1 and I2 be two

interpretations and let Σ be a signature. A relation ∼Σ ⊆ DI1 ×DI2

is called Σ-simulation from I1 to I2 if

• 𝑑1 ∼Σ 𝑑2 and 𝑑1 ∈ 𝑁 I1
implies that 𝑑2 ∈ 𝑁 I2

, f.a. 𝑁 ∈ ΣC,

• 𝑑1 ∼Σ 𝑑2 and (𝑑1, 𝑒1) ∈ 𝑟I1
implies (𝑑2, 𝑒2) ∈ 𝑟I2

and 𝑒1 ∼Σ 𝑒2

for some 𝑒2, f.a. 𝑟 ∈ ΣR.

To express that there is a Σ-simulation between I1 and I2 with

(𝑑1, 𝑑2) ∈ ∼Σ, we write (I1, 𝑑1) ∼Σ (I2, 𝑑2). Simulation relations

can be used to characterize elements of two interpretations w.r.t.

their satisfaction of EL concepts. We omit writing Σ as an index to

∼ as it is clear from the context.

Theorem 2.2 ([12]). LetI1 andI2 be two finite interpretations over

signature Σ with 𝑑1 ∈ DI1
and 𝑑2 ∈ DI2

. Then, (I1, 𝑑1) ∼ (I2, 𝑑2)
if and only if (I1, 𝑑1) |= 𝐻 implies (I2, 𝑑2) |= 𝐻 for all 𝐻 ∈ EL(Σ).

Model transformations are binary (usually functional) relations

on the class of finite interpretations.We use second-order (SO) trans-

ductions as formalism to describe model transformations. Graph

transductions are defined in [13] and tailored to description logic

interpretations in [16]. Intuitively, a transduction specifies a model

transformation by a tuple of SO formulae, called definition scheme,

that describes how to construct an output interpretation in terms

of the input interpretation. By SO(Σ,W) we denote the set of SO
formulae with free first-order variables in W. These variables are

called parameters. Let Σ be a binary signature, and letW be a finite

set of parameters. An SO definition scheme is a tuple

D = ⟨𝜒, 𝛿, (𝜃𝑁 )𝑁 ∈ΣC , (𝜂𝑟 )𝑟 ∈ΣR ⟩, 𝑤ℎ𝑒𝑟𝑒

• 𝜒 ∈ SO(Σ,W) (precondition),
• 𝛿 ∈ SO(Σ,W ∪ {𝑥}) (domain formula),

• 𝜃𝑁 ∈ SO(Σ,W ∪ {𝑥}), f.a. 𝑁 ∈ ΣC, (concept formulae),

• 𝜂𝑟 ∈ SO(Σ,W ∪ {𝑥,𝑦}), f.a. 𝑟 ∈ ΣR, (role formulae).

First, the precondition 𝜒 needs to be satisfied by the input interpreta-

tion for the transduction to be defined. Then, the domain formula 𝛿

defines the interpretation domain of the output interpretation.
2
For

this domain, the concept formulae 𝜃 and role formulae 𝜂 define the

interpretation function. Let I be an interpretation over a signature

Σ, letW be a set of parameters, and let 𝜆 be aW-assignment in I,
i.e., 𝜆 : W → DI

. A definition scheme D defines I′
from (I, 𝜆) if

• (I, 𝜆) |= 𝜒 (W),
• DI′

:= {𝑎 ∈ DI | (I, 𝜆) |= 𝛿 (W, 𝑎)},
• 𝑁 I′

:= {𝑎 ∈ DI′ | (I, 𝜆) |= 𝜃𝑁 (W, 𝑎)} f.a. 𝑁 ∈ ΣC,
• 𝑟I

′
:= {(𝑎, 𝑏) ∈ (DI′ )2 | (I, 𝜆) |= 𝜂𝑟 (W, 𝑎, 𝑏)} f.a. 𝑟 ∈ ΣR,

with (I, 𝜆) |= 𝛿 (W, 𝑎) meaning (I, 𝜆′) |= 𝛿 (W, 𝑥), where 𝜆′ is
the assignment extending 𝜆 such that 𝜆′ : 𝑥 ↦→ 𝑎 (and accordingly

for 𝜃 and 𝜂). We denote D̂(I, 𝜆) = I′
. The transduction 𝜏 induced

by D is defined as

𝜏 := {(I, D̂(I, 𝜆)) | 𝜆 is a W-assignment in I with (I, 𝜆) |= 𝜒},

and 𝜏 (I) denotes {D̂(I, 𝜆) | (I, 𝜆) |= 𝜒 for some 𝜆}. For functional
transductions, we write 𝜏 (I) = I′

.

2
We indicate parameter variables from the set W = {𝑧1, . . . , 𝑧𝑛 } in a formula 𝜑 by

writing 𝜑 (W, 𝑥 ) instead of 𝜑 (𝑧1, . . . , 𝑧𝑛, 𝑥 ) .
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Figure 1: Canonical Model IT𝑒𝑥

3 COUNTERMODELS AS EXPLANATIONS
In this section, we summarize the definitions of relevant parts

of countermodels that serve as explanation for non-entailments

of CIs with respect to EL TBoxes [3]. We explain and exemplify

each definition by a running example. Asking for the validity of

a concept inclusion 𝐶 ⊑ 𝐷 w.r.t. T is called subsumption query,

denoted by 𝐶 ⊑T 𝐷 . Without loss of generality, we assume that

the subsumption queries only use concept names 𝐴 and 𝐵. We

call an interpretation I countermodel to 𝐴 ⊑T 𝐵 if I |= T and

I ̸|= 𝐴 ⊑ 𝐵. In principle, every countermodel is an explanation

for the non-entailment of the subsumption query. However, these

models might be unnecessarily large and contain irrelevant parts

to the subsumption query. For instance, a medical ontology likely

contains knowledge about various diseases that are not related to

the diseases from the subsumption query. Our goal is to reduce the

amount of domain elements, concept labels, and role labels and

thereby provide concise explanations.

Example 3.1. Neuromyelitis optica (NMO) was long considered

a subtype of multiple sclerosis (MS), which both are autoimmune,

demyelinating diseases of the central nervous system. However, in

2004, it was discovered that NMO is actually a distinct disease [23].

Due to a number of overlapping clinical features, medical differen-

tiation can be challenging, which potentially leads to misdiagnoses

[19]. We express some of these characteristics in the TBox

T𝑒𝑥 B
{
NMO ⊑ NeuroDisease ⊓ ∃inflames.OpticNerve ⊓
∃buildsAntibodiesAgainst.Aquaporin4 ⊓
∃.hasCytologicalFinding.GranulocyticPleocytosis ,
MS ⊑ NeuroDisease ⊓ ∃develops.CerebralLesion ⊓
∃hasCytologicalFinding.LymphocyticPleocytosis ⊓
∃inflames.OpticNerve , Aquaporin4 ⊑ Protein ,

LymphocyticPleocytosis ⊑ ∃increases.Lymphocytes ,

Lymphocytes ⊑ ∃occursIn.CerebrospinalFluid ,
GranulocyticPleocytosis ⊑ Pleocytosis ,

LymphocyticPleocytosis ⊑ Pleocytosis

}
The example subsumption query is 𝜙𝑒𝑥 B NMO ⊑T𝑒𝑥 MS, which

is not entailed by the TBox T𝑒𝑥 . Figure 1 depicts the canonical model

IT𝑒𝑥 of T𝑒𝑥 .3

3
We omit displaying the ⊤ element for a better overview.
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Figure 2: 𝛼-relevant Part of IT𝑒𝑥
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Figure 3: 𝛽-relevant Part of IT𝑒𝑥

We identify the relevant substructures of countermodels by de-

manding these substructures to be smallest models of relevant

subsumers. For a concept 𝐻 , we denote by 𝐻 [𝑁/𝑀] the syntactic
substitution of every occurrence of concept 𝑁 by concept𝑀 in 𝐻 .

Definition 3.2 (Relevant Subsumer Sets). Let T be an EL TBox

and 𝐴, 𝐵 ∈ sig(T ) be concept names. The relevant subsumer sets of

T w.r.t. 𝐴 and 𝐵 are:

ST (𝐴) B {𝐻 | T |= 𝐴 ⊑ 𝐻 }, (1)

CT (𝐴, 𝐵) B {𝐻 | 𝐻 ∈ ST (𝐴), 𝐻 ∈ ST (𝐵)}, (2)

¯
ST (𝐴, 𝐵) B {𝐻 | 𝐻 ∈ ST (𝐵), 𝐻 [𝑁/⊤] [∃𝑟 .⊤/⊤] ∈ ST (𝐴) (3)

for all 𝑁 ∈ sigC (𝐻 ) and all 𝑟 ∈ sigR (𝐻 )}.

Definition 3.3 (Relevant Parts of Countermodels). Let T be a TBox

with signature Σ, let 𝜙 B 𝐴 ⊑T 𝐵 be a subsumption query, let

I be a countermodel to 𝜙 w.r.t. T . An interpretation I′
is called

{𝛼, 𝛽,Δ, Δ̄}-relevant part of I w.r.t. 𝜙 and T if I′
is a smallest sub-

structure of I, s.t. I′ ̸ |= 𝜙 , and there is an

• 𝑎 ∈ 𝐴I′
and (I′, 𝑎) |= ST (𝐴). (𝛼)

• 𝑎 ∈ 𝐴I′
, 𝑏 ∈ 𝐵I′

, (I′, 𝑎) |= ST (𝐴), (I′, 𝑏) |= ST (𝐵). (𝛽)

• 𝑎 ∈ 𝐴I′
, 𝑏 ∈ 𝐵I′

, (I′, 𝑎) |= CT (𝐴, 𝐵), (I′, 𝑏) |= ST (𝐵). (Δ)
• 𝑎 ∈ 𝐴I′

, 𝑏 ∈ 𝐵I′
, (I′, 𝑎) |= CT (𝐴, 𝐵), (I′, 𝑏) |= ¯

ST (𝐴, 𝐵). (Δ̄)

By smallest substructure we mean that any proper substructure

of I′
is not a model of the respective relevant subsumer sets. For

canonical models, these parts always exist but are not unique up to

isomorphism. For ⊗ ∈ {𝛼, 𝛽,Δ, Δ̄ }, we sometimes write “⊗-relevant
countermodel”, and we write ⊗-relevant subsumer set(s) to refer to

the respective relevant subsumer sets used in Definition 3.3.

We explain the intuition behind the four relevance notions in ref-

erence to the relevant parts ofIT w.r.t.𝜙𝑒𝑥 depicted in Figures 2 to 5.

The 𝛼-relevant part highlights the information on 𝐴 w.r.t. T and
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Figure 4: Δ-relevant Part of IT𝑒𝑥
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Figure 5: Δ̄-relevant Part of IT𝑒𝑥

gives an instance of an element that is a basic reason for why the

subsumption query does not hold w.r.t. T – an element that is in

the extension of 𝐴 but not of 𝐵. The 𝛽-relevant part follows the

same idea but for both concepts 𝐴 and 𝐵. This part contains the

witness for the non-entailment, element 𝑎, and also a representative

for 𝐵 to show the contrast between 𝐴 and 𝐵 and thereby explain

the non-entailment.

The Δ-relevant part is a refinement of the 𝛽-relevant part in the

sense that the aforementioned contrast between𝐴 and 𝐵 is reduced

to a logically relevant extent. The underlying consideration is the

following. If T |= 𝐴 ⊑ 𝐵 was the case, the set of subsumers of 𝐴

w.r.t. T would be a superset of the set of subsumers imposed on

𝐵 by T . Loosely speaking, to explain why T ̸|= 𝐴 ⊑ 𝐵, we display

only subsumers of 𝐵 that are not subsumers of 𝐴 to illustrate what

𝐴 elements are missing in order to be 𝐵 elements. In terms of the

running example, to explain why NMO is not MS, the fact that

NMO comes with antibodies against aquaporin 4 does not make a

difference. But MS developing cerebral lesions, which NMO does

not, is in fact a reason for the non-entailment and is hence part of

the Δ-relevant countermodel.

The Δ̄-relevant part shortens the Δ-relevant part by illustrating a
flattened from of difference. This is best explained with the running

example. In the Δ-relevant part, MS comes with the cytological

finding lymphocytic pleocytosis, which increases the lymphotcytes

that occur in a cerebrospinal fluid. Now, the Δ̄-relevant part cuts
the information that lymphotcytes that occur in a cerebrospinal

fluid because the increase of lymphotcytes alone shows already a

sufficient difference to understand the non-entailment. More gener-

ally, the difference is flat in the sense that the role depth is restricted

to only going one step further in the 𝐵-reachable part compared to

𝐴-reachable part.

4 COMPUTING MODEL TRANSFORMATIONS
The four kinds of relevant parts of canonical models can be ob-

tained by model transformation. Canonical models of normalized

EL TBoxes are finite and computable in polynomial time [4]. Note

that, by Theorem 2.1, canonical models satisfy 𝐴 ⊑ 𝐵 if and only if

the subsumption query 𝐴 ⊑T 𝐵 is entailed by T . Thus, canonical

models are countermodel to negative subsumption queries by de-

fault. For each relevance type, we introduce a separate transduction.

In the first step of the extraction process, suitable representatives

of the concepts of the subsumption query are selected. An element

𝑎 ∈ 𝐴IT
is called representative of𝐴 in IT if and only if for all other

𝑥 ∈ 𝐴IT
there is no concept name 𝐴′

, s.t. 𝑥 ∈ 𝐴′IT
and 𝑎 ∉ 𝐴′IT

–

and likewise for 𝑏 ∈ 𝐵IT
.

In order to devise the transductions, we define auxiliary predi-

cates that are used in the definition schemes. The predicate for the

representative of a concept name 𝐴 in a canonical model is defined

by 𝑟𝑒𝑝𝐴 (𝑥) B

𝐴(𝑥) ∧ (∀𝑦 : 𝑦 ≠ 𝑥 ∧𝐴(𝑦) → (
∧

𝑁 ∈ΣC
𝑁 (𝑦) → 𝑁 (𝑥))) (4)

We denote the respective 𝐴-representative and 𝐵-representative

form the domain of a canonical model by 𝑎 and by 𝑏. Note that

𝑟𝑒𝑝𝐴 (𝑥) → 𝐴(𝑥) ∧ ¬𝐵(𝑥) for canonical models that do not sat-

isfy the subsumption query. Furthermore, we define 𝑠𝑢𝑐𝑐 (𝑥,𝑦) B
(∨𝑟 ∈ΣR 𝑟 (𝑥,𝑦))∨𝑥 = 𝑦. We then define reachability of two elements

in an interpretation, denoted by 𝑟𝑒𝑎𝑐ℎ(𝑥,𝑦), as the reflexive and
transitive closure of the 𝑠𝑢𝑐𝑐 relation. An according MSO formula

for the predicate 𝑟𝑒𝑎𝑐ℎ is given in [13].

4.1 Coarse Relevant Parts of Canonical Models
We next introduce the definition schemes D𝛼 to DΔ̄ that induce

the transductions 𝜏𝛼 to 𝜏Δ̄ [3]. These transductions cut down the

canonical model to its coarse relevant part, which only contains

information about the concepts in question. These parts, however,

need not beminimal as required inDefinition 3.3. For this reason, we

introduce another transduction 𝜏min in Section 4.2 that is composed

with 𝜏𝛼 to 𝜏Δ̄ for minimizing the coarse relevant part.

LetW B {𝑢}. The definition scheme D𝛼 for 𝜏𝛼 consists of:

𝜒 (W) B 𝑟𝑒𝑝𝐴 (𝑢), (5)

𝛿 (W, 𝑥) B 𝑟𝑒𝑎𝑐ℎ(𝑢, 𝑥), (6)

𝜃𝑁 (W, 𝑥) B 𝑁 (𝑥), (7)

𝜂𝑟 (W, 𝑥,𝑦) B 𝑟 (𝑥,𝑦) . (8)

The transduction selects the representative of 𝐴 as the witness

for the non-subsumption 𝐴 @ 𝐵 from IT by (5) and collects all

the reachable successors of it by (6) to induce a substructure of IT
w.r.t. sig(IT ) by (7) and (8).

To construct D𝛽 , we modify D𝛼 . Let nowW = {𝑢, 𝑣}. We use

𝜒 (W) B 𝑟𝑒𝑝𝐴 (𝑢) ∧ 𝑟𝑒𝑝𝐵 (𝑣), (9)

𝛿 (W, 𝑥) B 𝑟𝑒𝑎𝑐ℎ(𝑢, 𝑥) ∨ 𝑟𝑒𝑎𝑐ℎ(𝑣, 𝑥), (10)

and (7) and (8) as D𝛽 . Hence, 𝜏𝛼 and 𝜏𝛽 require only reachability

checks. As mentioned earlier, the normalization and computation of

the canonical model of an EL TBox can be done in polynomial time

[5, 9], and these models always exist for EL TBoxes. The single

relevant parts always exist for canonical models.
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Lemma 4.1 (Soundness for 𝜏𝛼 and 𝜏𝛽 [3]). Let 𝜙 B 𝐴 ⊑T 𝐵, s.t.

T ̸|= 𝜙 , let IT be the canonical model of T , and let ⊗ ∈ {𝛼, 𝛽}. We

have that 𝜏⊗ (IT ) is a model of the ⊗-relevant subsumer set(s).

Proof sketch. We have (𝜏𝛼 (IT ), 𝑎) |= ST (𝐴) because IT |=
𝐴 ⊑ 𝐻 for all 𝐻 ∈ ST (𝐴) by Theorem 2.1, in particular for the

𝐴 representative 𝑎. Since the representative(s) of 𝐴 (and 𝐵) al-

ways exists in IT if IT ̸ |= 𝐴 ⊑T 𝐵, there is an assignment 𝜆

with (IT , 𝜆) |= 𝜒 (W). Since 𝜏𝛼 induces the reachable substruc-

ture of 𝑎 from IT , every concept is satisfied at 𝑎 as in IT . The same

argumentation holds for 𝜏𝛽 w.r.t. the 𝐵 representative 𝑏. □

The complexity of a transduction is determined by the highest

complexity of evaluating the definitions scheme formulae over the

given input. All complexity results given are expressed in the size

of the input IT .

Theorem 4.2. Computing 𝜏𝛼 and 𝜏𝛽 is NL-complete.

The most expensive task for computing 𝜏𝛼 and 𝜏𝛽 in their def-

inition schemes is to evaluate the predicate 𝑟𝑒𝑎𝑐ℎ over the input

structure, which is NL-complete for directed graphs [18].

Extracting the Δ-relevant part of a canonical model is different

from the previous two cases. It is required that the representative

of concept 𝐴 satisfies the subsumers of 𝐴 that are subsumers of

𝐵 as well; whereas the representative of concept 𝐵 must satisfy

all subsumers of 𝐵 w.r.t. T . We make use of additional auxiliary

predicates. The predicate 𝜎 is true for two sets of elements if they

constitute paths made of the same roles in I once starting from

the 𝐴-representative 𝑎 and once starting from the 𝐵-representative

𝑏. We denote the occurrence of free second-order variables 𝑋 in

a formula 𝜑 by box brackets in 𝜑 [𝑋 ] and we denote second-order

binary relation variables by small bold letters.

𝜎 [𝑋,𝑌, 𝑎, 𝑏] B ∃h : 𝜑 [h, 𝑋,𝑌 , 𝑎, 𝑏] ∧𝜓 [h], where (11)

𝜓 [h] B ∀𝑤, 𝑥,𝑦, 𝑧 : h(𝑥,𝑤)∧ h(𝑦, 𝑧) →
∨
𝑟 ∈ΣR

𝑟 (𝑥,𝑦)∧𝑟 (𝑤, 𝑧) (12)

and the formula 𝜑 [h, 𝑋,𝑌 , 𝑎, 𝑏] defines h as a surjective map from𝑋

to 𝑌 with h(𝑎, 𝑏).4 To express that the elements in a set 𝑋 ⊆ DI
in

an interpretation I constitute a path from one element to another

using the 𝑠𝑢𝑐𝑐 relation, we use a monadic second-order (MSO)

formula 𝜋 [𝑋, 𝑎, 𝑏] defined in [13, Proposition 5.11]. We combine

these formulae in the predicate

𝑠𝑖𝑚(𝑎, 𝑏, 𝑥,𝑦) B ∃𝑋,𝑌 : 𝜎 [𝑌,𝑋, 𝑎, 𝑏]∧𝜋 [𝑋, 𝑎, 𝑥]∧𝜋 [𝑌,𝑏,𝑦] . (13)
Hence, two elements 𝑥 and 𝑦 satisfy 𝑠𝑖𝑚(𝑎, 𝑏, 𝑥,𝑦) if and only if 𝑥

is reachable from 𝑎 over a path, s.t. there is a same path from 𝑏 to 𝑦.

Note that 𝜎 contains a quantification over a binary relation h and

the definition schemes using this formula do not induce MSO trans-

ductions but rather second-order transductions. However, since

the definition scheme formulae are evaluated over finite interpre-

tations, 𝜎 is still decidable and thus the transduction computable.

The definition scheme DΔ inducing the transduction 𝜏Δ consists of

the formulae:

𝜒 (W) B 𝑟𝑒𝑝𝐴 (𝑢) ∧ 𝑟𝑒𝑝𝐵 (𝑣), (14)

𝛿 (W, 𝑥) B ∃𝑦 : 𝑠𝑖𝑚(𝑢, 𝑣, 𝑥,𝑦) ∨ 𝑟𝑒𝑎𝑐ℎ(𝑣, 𝑥) (15)

4
We reuse the names of the elements 𝑎 and 𝑏 as variables.

as well as the concept name formulae 𝜃𝑁 (W, 𝑥) B
(∃𝑦 : 𝑠𝑖𝑚(𝑢, 𝑣, 𝑥,𝑦) ∧ 𝑁 (𝑥) ∧ 𝑁 (𝑦)) ∨ (𝑟𝑒𝑎𝑐ℎ(𝑣, 𝑥) ∧ 𝑁 (𝑥)) (16)

with 𝑁 as a concept name variable in 𝜃𝑁 that ranges over ΣC \ {𝐴}.
In addition, 𝜃𝐴 is defined as 𝜃𝑁 with the further disjunct 𝑥 = 𝑢. The

role formulae are defined as 𝜂𝑟 (W, 𝑥,𝑦) B
((∃𝑤, 𝑧 : 𝑠𝑖𝑚(𝑢, 𝑣, 𝑥,𝑤) ∧ 𝑟 (𝑤, 𝑧)) ∨ 𝑟𝑒𝑎𝑐ℎ(𝑣, 𝑥)) ∧ 𝑟 (𝑥,𝑦) (17)

where the role variable 𝑟 ranges over ΣR. The definition scheme

DΔ̄ is DΔ with a modified domain formula 𝛿 (W, 𝑥) B
(∃𝑦 : 𝑠𝑖𝑚(𝑢, 𝑣, 𝑥,𝑦)) ∨ (∃𝑦, 𝑧 : 𝑠𝑖𝑚(𝑢, 𝑣,𝑦, 𝑧) ∧ 𝑠𝑢𝑐𝑐 (𝑧, 𝑥)) . (18)

Lemma 4.3 (Soundness for 𝜏Δ and 𝜏Δ̄ [3]). Let 𝜙 B 𝐴 ⊑T 𝐵, s.t.

T ̸|= 𝜙 , let IT be the canonical model of T , and let ⊗ ∈ {Δ, Δ̄}. We

have that 𝜏⊗ (IT ) is a model of the ⊗-relevant subsumer sets.

Proof sketch. For (𝜏Δ (IT ), 𝑏) |= ST (𝐵), one can simply adopt

the proof from Lemma 4.1. We show (𝜏Δ (IT ), 𝑎) |= CT (𝐴, 𝐵) by
contradiction. Assume there is an 𝐻 ∈ CT (𝐴, 𝐵), s.t. (𝜏Δ (IT ), 𝑎) ̸|=
𝐻 . Hence, (IT , 𝑎) |= 𝐻 , (IT , 𝑏) |= 𝐻 and (𝜏Δ (IT ), 𝑎) ̸|= 𝐻 . This

leads to a contradiction since the predicate 𝑠𝑖𝑚 is used to copy

relevant parts in IT reachable from 𝑎 in the definition scheme

of 𝜏Δ. For 𝜏Δ̄, recall that 𝜏Δ̄ (IT ), 𝑏) |= ¯
ST (𝐴, 𝐵) is required by

Definition 3.3. This is achieved by using formula (18) in DΔ̄ with

the additional conjunct 𝑠𝑢𝑐𝑐 (𝑧, 𝑥) to satisfy (𝜏Δ̄ (IT ), 𝑏) |= {𝐻 | 𝐻 ∈
ST (𝐵), 𝐻 [𝑁/⊤] [∃𝑟 .⊤/⊤] ∈ ST (𝐴)}. Intuitively, this means that 𝑏

in 𝜏Δ̄ (IT ) satisfies subsumers of 𝐵 in IT resticted by the nesting

depth of common subsumers with 𝐴 plus 1 as the subsitution in

𝐻 [𝑁/⊤] [∃𝑟 .⊤/⊤] is applied only once. □

Theorem 4.4. Computing 𝜏Δ and 𝜏Δ̄ requires linear time.

Proof. In the predicate 𝑠𝑖𝑚(𝑎, 𝑏, 𝑥,𝑦), is true for an element 𝜆(𝑥)
reachable from 𝑎 if and only if there is an element 𝜆(𝑦) reachable
from 𝑏, s.t. the edge transitions from 𝑎 to 𝜆(𝑥) can also be made

from 𝑏 to 𝜆(𝑦). The transitions can be seen as letters of words of

accepted by a finite state automaton (FSA) that consists of 𝑎 as start

state, and the induced substructure of the elements reachable from

𝑎 w.r.t. ΣR, where every reachable element is a finial state. The same

is done for the 𝑏 induced substructure. The acceptance condition

is that the word is readable in the 𝑎 automaton as well as in the 𝑏

automaton. Reading a word from an FSA and checking if the same

word is accepted by another FSA requires linear time. □

4.2 Minimizing Transduction
Now, the resulting structure of the previous transductions is not

necessarily minimal yet as required by Definition 3.3. In order to

achieve minimality, we compose 𝜏𝛼 to 𝜏Δ̄ with another transforma-

tion 𝜏min that yields a required minimal substructure of the image

of 𝜏𝛼 to 𝜏Δ̄ respectively. The transformation 𝜏min is a composition

of intermediate transductions, which we introduce next.

For the images of 𝜏𝛼 and 𝜏𝛽 , the transduction 𝜏min is defined as

composition of two further transduction 𝜏𝜇 and 𝜏
reach

. The mini-

mization process is simpler for 𝜏𝛼 and 𝜏𝛽 compared to 𝜏Δ and 𝜏Δ̄,

where 𝜏min requires an additional pre-processing transformation

𝜏sim. For the latter two cases, we define 𝜏min B 𝜏
reach

◦ 𝜏𝜇 ◦ 𝜏sim,
and for the first two cases without 𝜏sim.

The intuition behind 𝜏sim is that, in some cases, the Δ and

Δ̄ coarse relevant part still entails more than necessary because
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of loops. An additional check for roles is needed in order to re-

duce the unrequired entailments caused by loops reachable from

𝑎 to a possible minimum. We define Dsim by (9) as precondition,
𝛿 (W, 𝑥) B ⊤(𝑥) as domain formula, and as role name formulae

𝜂𝑟 (W, 𝑥,𝑦) B 𝑟 (𝑥,𝑦) ∧ (𝑟𝑒𝑎𝑐ℎ(𝑣, 𝑥) ∨ (∃𝑥 ′, 𝑦′ : 𝑠𝑖𝑚(𝑢, 𝑣, 𝑥, 𝑥 ′) ∧
𝑟 (𝑥 ′, 𝑦′) ∧ ((𝑟𝑒𝑎𝑐ℎ(𝑦, 𝑥) ∧ (∀𝑧 : 𝑟𝑒𝑎𝑐ℎ(𝑦, 𝑧) → ∃𝑋 : 𝜋 [𝑋,𝑦, 𝑧] ∧
𝑎 ∉ 𝑋 )) → (𝑠𝑖𝑚(𝑥, 𝑥 ′, 𝑦,𝑦′) ∨ ∃𝑦′′ : 𝑟 (𝑥,𝑦′′))) (19)

Concept names are assigned with an appropriate modification of

(16) using in the sense of the third conjunct of (19). Intuitively, the
roles that causes loops in the 𝑎 reachable part are kept only if there

is a similar role in the 𝑏 reachable part or if the role is necessary to

model common subsumers of 𝐴 and 𝐵.

In the definition scheme of 𝜏sim, we use the simulation relation

from the images of the transductions for the coarse relevant parts

to themselves. It follows from [15] that, if there is a simulation

relation, then there is a unique maximal simulation over them. The

idea for 𝜏𝜇 is to erase simulation equivalent elements but one w.r.t.

a given simulation relation and to furthermore make non-maximal

elements unreachable from 𝑎 and 𝑏. To cut off the unreachable

states in the resulting interpretation, 𝜏
reach

is applied afterwards,

which is defined for images 𝜏𝛽 to 𝜏Δ̄ as 𝜏𝛽 , and for the image of

𝜏𝛼 as 𝜏𝛼 .
5
As parameters for the definition scheme of 𝜏𝜇 , we use a

selection of representatives for the equivalence classes defined by

S B {[𝑒] | [𝑒] = {𝑑 ∈ DI \ {𝑎, 𝑏} | (𝑒 ∼ 𝑑) ∧ (𝑑 ∼ 𝑒)}}.
The so defined relation is an equivalence relation.We enumerate the

equivalence classes by [𝑒]𝑖 (e.g. by using lexicographical order over
the names of the domain elements). The parameters are defined

asW B {𝑥𝑖 | 𝑖 ∈ [1 : |S|]} ∪ {𝑢, 𝑣}, using the simulation relation

from 𝜏⊗ (IT ) to itself. We furthermore use the predicate 𝜇 (𝑢, 𝑥) in
D𝜇 for simulation maximal elements defined by

𝜇 (𝑦, 𝑥) B 𝑟𝑒𝑎𝑐ℎ(𝑦, 𝑥) ∧ ∀𝑧 : 𝑟𝑒𝑎𝑐ℎ(𝑦, 𝑧) ∧ 𝑧 ∼ 𝑥 → 𝑥 = 𝑧. (20)

The precondition of definition scheme D𝜇 maps the representa-

tives of the equivalence classes to the parameters while preferring

common successor elements by

𝜒 (W) B
𝑛∧
𝑖=1

𝑥𝑖 ∈ [𝑒]𝑖 ∧ 𝑟𝑒𝑝𝐴 (𝑢) ∧ 𝑟𝑒𝑝𝐵 (𝑣) ∧ (∃𝑦 : 𝑦 ∈ [𝑒]𝑖 ∧

𝑟𝑒𝑎𝑐ℎ(𝑢,𝑦) ∧ 𝑟𝑒𝑎𝑐ℎ(𝑣,𝑦) → 𝑟𝑒𝑎𝑐ℎ(𝑢, 𝑥) ∧ 𝑟𝑒𝑎𝑐ℎ(𝑣, 𝑥)) . (21)

Domain elements are selected by a suitable choice of parameters.

𝛿 (W, 𝑥) B
𝑛∨
𝑖=1

𝑥 = 𝑥𝑖 , where 𝑖 ∈ [1 : |W|] (22)

The concept names 𝑁 ∈ Σ are assigned by 𝜃𝑁 (W, 𝑥) B 𝑁 (𝑥).
Lastly, the role name formulae of D𝜇 make non-maximal states

unreachable by

𝜂𝑟 (W, 𝑥,𝑦) B 𝑟 (𝑥,𝑦) ∧ 𝜇 (𝑢, 𝑥) ∨ 𝜇 (𝑣, 𝑥) . (23)

Using the so defined transduction 𝜏min, we obtain the following

theorem for the complete transformation process.

Theorem 4.5. Let 𝜙 B 𝐴 ⊑T 𝐵 be a subsumption query, s.t.

T ̸|= 𝜙 , let IT be the canonical model of T , and let ⊗ ∈ {𝛼, 𝛽,Δ, Δ̄}.
Then, 𝜏min (𝜏⊗ (IT )) is an ⊗-relevant part of IT w.r.t. 𝜙 and T .

5
We omit indexing 𝜏min as well as 𝜏reach as it is clear from the context.

Proof sketch. The single transformation steps of 𝜏min are

model preserving w.r.t. to the ⊗-relevant subsumer sets and every

substructure of the image of 𝜏min is not a model of the respective

relevance sets. While 𝜏sim reduces the 𝑎 reachable part by unneces-

sary loops by using the 𝑠𝑖𝑚 predicate and the simulation relation,

𝜏𝜇 is model preserving as well. First, one suitable representative

of the simulation equivalence classes is picked, and then, roles are

added by to simulation maximal elements of the before selected

domain elements only. This implies that the image of 𝜏
reach

◦ 𝜏𝜇 is

simulation equivalent to the preimage. Furthermore, since maximal

elements and one representative of the equivalence classes remain,

by Theorems 2.2 and 2.1, reducing the image of 𝜏min would violate

the satisfaction of the relevant subsumer sets. □

Computing the largest simulation between two finite interpreta-

tions needs polynomial time [12]. Hence, we canmake the following

statement regarding the computational effort for 𝜏min.

Theorem 4.6. Computing 𝜏min requires polynomial time.

4.3 Post-processing Transductions
As final remarks in to this section, we suggest two more simple

transformations that can be composed with the previously intro-

duced transformations. First, we have assumed throughout the

paper that the TBox is given in normal form. In order to clean the

countermodel from the freshly introduced concept names of the

normalization process, we devise a transduction defined by

⟨𝛿 (𝑥) B ⊤(𝑥), 𝜃𝑁 (𝑥) B 𝑁 (𝑥), 𝜂𝑟 (𝑥,𝑦) B 𝑟 (𝑥,𝑦)⟩

for sig(T ), where T is the not yet normalized TBox. Second, in

order to avoid shared elements that are reachable from the 𝐴 and 𝐵

representatives, one can use transduction that copies elements. We

have not formally introduced copying transductions, but the idea

is that each element reachable from the 𝐴 representative gets an

index value assigned, the same is done for all elements from the 𝐵

representative with a second index value, and the domain of the

transductions image is the disjoint union of both sets of indexed

elements.

5 IMPLEMENTATION AND EVALUATION
In this section we describe our implementation for extracting rele-

vant parts of countermodels and the experiment we ran to evaluate

it. We first implement the procedure of computing canonical mod-

els of EL ontologies [4] using the reasoner Elk [20]. Since the

computation of a canonical model is not a part of our approach for

generating relevant parts of countermodels (we assume it is a part

of the input), we do not include statistical data about the efficiency

of computing these models. However, we show how we adapt our

approach to be more practical and circumvent the computation

of the entire canonical model. We also implement a procedure for

generating and minimizing the four different types of relevant parts

as defined in Definition 3.3, which follows the logic of the trans-

ductions introduced in Sections 4. The tool and the experiment are

implemented using Java. The evaluation was conducted on a Linux

Debian machine (Intel Xeon CPU E5-2640 0, 2.50 GHz, 20 GB Java

heap space). The Experiment resources are available here [2].
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Relevant Axioms. Extracting a relevant part from a canonical

model of the full TBox is guided by the input subsumption query,

and more precisely, by the signature of this query. Therefore, parts

of the canonical model that are not related to this signature are

discarded. This means that the TBox axioms that are modeled by

these parts can also be discarded. Then instead of computing the

entire canonical model of the TBox, we can compute the canonical

model of a subset of the TBox that contains the relevant axioms.

These subsets are called modules [17]. There are different types of

modules, and in our setting, we use what is called ⊥-modules. Intu-

itively, extracting a ⊥-module for the signature of a subsumption

query, results in a module containing all subsumers of concepts of

this signature. Hence a module allows us to focus on a relatively

smaller set of axioms which leads to a relatively smaller canon-

ical model. In order to compute ⊥-modules, we use the module

extraction functionality provided by the OWL API
6
.
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Extension and refinement. After computing the canonical model

of a module, we extract the four different coarse relevant parts.

The implementation of these extraction functionalities is relatively

6
http://owlcs.github.io/owlapi/

straightforward, and based on ideas introduced in Section 4. Since

a coarse relevant part is extracted from a canonical model, each

path in its graph can be mapped to an EL concept in the signature

of the TBox. If there are two paths 𝑝1 and 𝑝2 starting at some

element 𝑒 , where some concepts𝐶1 and𝐶2 are mapped to 𝑝1 and 𝑝2

respectively s.t. 𝐶1 ⊑ 𝐶2. Then 𝑝2 is redundant w.r.t. 𝐶2 because 𝑝1

models both 𝐶1 and 𝐶2. So in order to obtain a minimal relevant

part, we first extend each element 𝑒 in a coarse part with a set

of concepts representing every path starting at 𝑒 . We then refine

each element by removing redundant paths. A path 𝑝 starting at

an element 𝑒 is redundant iff for every concept 𝐶 that is mapped

to 𝑝 , there exists some other path 𝑝′ starting at 𝑒 s.t. 𝐶′
is mapped

to 𝑝′ and |= 𝐶′ ⊑ 𝐶 .

Experiment description. We ran our experiment using EL ontolo-

gies extracted from ORE 2015 Reasoner Competition Corpus [25].

We considered ontologies with a size ≤ 10 MB, with a total of 171

ontologies out of 235. Creating a relatively large number of plau-

sible subsumption queries that lead to interesting relevant parts

while avoiding selection bias is not an easy task. In total, we gen-

erate 11, 600 subsumption queries. We limit the total of queries

per ontology to 1% of the amount of concept names appearing in

it, with a minimum of 50 queries. The idea here is that the more

concepts an ontology has, the more queries one can raise. The

queries are generated randomly, but we also tried to create queries

that are “reasonable” in the context of their TBox. We start by ran-

domly selecting a concept 𝐶 from a TBox T , and all concepts 𝐶′

appearing in T s.t. T |= 𝐶′ ⊑ 𝐶 . A subsumption query is then an

axiom 𝜂 B 𝐶′
1
⊑ 𝐶′

2
where T ̸|= 𝜂. For each subsumption query,

the four types of coarse relevant parts and their minimization are

computed. Each of these computations is set to time out after 10

minutes. For 11, 544 subsumption queries, all types of relevant parts

are computed successfully. Whereas 56 queries timed out at the

minimization stage. In total, four ontologies timed out, hence 167

ontologies were successfully processed.

Experiment results. We aggregate subsumption queries, and by

extension the different relevant parts in four group categories. Two

of which are based on the canonical model of the TBox from which

the subsumption query is generated. These group categories are

labeled with V and E. The former is based on the total number of

elements in the canonical model of the TBox, whereas the latter is

based on the total number of edges. The other two group categories,

labeled MV and ME, are based on the total number of elements

and edges respectively, but of canonical models of modules instead

of full TBoxes. There are 18 groups in each group category, and

the size of each group is depicted in Figure 12. In Figure 6 we

can see that on average, the minimization of coarse parts leads to

2%− 20% reduction in these relevant parts. Because of the nature of

canonical models, and how ontologies are usually designed, we can

see that redundancy occurs much more in edges in comparison to

domain elements. However, when we consider Δ and Δ̄ parts, we

get more redundancy in domain elements in comparison to 𝛼 and 𝛽

parts. For 𝛽
V
and 𝛽

E
, the max reduction percentage per ontology

is 39% and 89% respectively. Analogously, the max reduction w.r.t.

Δ̄V and Δ̄E is 72% and 88%. In Figure 7 we can see the average

reductions of 𝛽 and Δ̄ w.r.t. the four grouping categories. Figures 8-

11 show the average computation time of the coarse (lower opacity
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markers) and minimized relevant parts. In Figures 8 and 9 we get an

average time that ranges over seconds but with no clear trend for

the computation behavior. On the other hand, in Figures 10 and 11

we get an average time that ranges over minutes but with more

informative chart. It is clear that larger values on x-axes do not

imply longer computation times. However, the more edges in a

coarse part, the higher the chance that the refinement becomes

harder. The main disadvantage with our approach is not the large

number of edges in a canonical model, but rather the tighter concept

dependencies which translate in more connectivity in the graph.
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6 CONCLUSIONS AND FUTUREWORK
We have introduced an approach for explaining non-entailment

of EL ontologies based on various notions of relevance and dis-

cussed the computational properties of the problem of extracting

relevant parts from canonical models. The extraction is described by

means of model transformations using graph transductions. We fur-

thermore present an implementation of our approach and discuss

the results of our evaluation.

As for future work, we would like first to conduct a user study

to confirm whether the relevant parts are enhancing users under-

standing of non-entailments. Second, we will look into different

reasoning tasks such as explaining negative query answering re-

sults [10]. Third, we will consider more expressive DLs. However,

many of these DLs do not admit the canonical model property,

which requires a substantial adaptation of our approach.
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